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ABSTRACT

In these few pages, reader you will find
Complete & theory, from McMillan does it stem,
To satisfy the criticizing mind.

The topic network's pure foundation treats.
With definitions it begins, such is system;

Then n-port properties one here soon meets.

For general networks are such defined;
Then comes the distributional extension
For special type n-ports this holds refined.

The end has exponential varisbles to greet,

With generalized descriptions linear, the mention,
And paredoxes as an unsolved feat.

- ii - SEL-63-022



CONTENTS
Page
I. INTRODUCTION + + ¢ « + o o « o o o o o o o o o o o o o o o o 1
II. SYSTEMS, NETWORKS & n-PORTS .+ « « + o o ¢ « o ¢ s o s o o » 2
III. PROPERTIES OF N-PORTS .« « « « ¢ + ¢ « o ¢ o o o o ¢ o o o s 8
IV, EXTENSIONS & ¢ + + o« « o o o o o ¢ o s 06 o s s 0 0 oo o0+ 16
V. CONCLUSIONS '« + ¢ « ¢ « o « o o ¢ o o o o+ s+ o o o o o o« o s 30

%
#
§
€
4
¥

ILIUSTRATIONS
Figure Page
1. Possible variable cholces . « ¢« ¢ o ¢ ¢ + o o o o ¢ o o o &

%

. D-port variables . ¢ « + s o o o ¢ ¢ o 6 6 s s e e 6 0 s s
. Representations for example 1 . ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ o o s ¢ o &
. Nullator and nOrator « . + ¢« ¢ o o o o+ o o ¢ o o o s o o » o

. Nonlinear N ¢ & ¢ o ¢ ¢ ¢ o o ¢ o o o o o ¢ o o o s o o o

O VOV 3 W\ & D

2

3

L

5. Conversion of 4 terminal network to & 3-port . . . . « « + &
6

T. The i1deal diode .« + ¢ o ¢ ¢ ¢ ¢ ¢+ o o ¢ ¢ s o 6 ¢ o o o o
8. Voltages used indefinition 2 . . « + « v + ¢ ¢ ¢« + . « .+ o 10
9. Augmented NEtwork . + « « ¢ ¢ ¢ ¢ o o+ ¢ o o s o 0 s 0 o o o 12
10, Limiting networks .« « « o o o « & « o o s o s s s o o s o » 16
11. Functions converging to u(-t) . . . . ¢« ¢« « ¢« ¢ ¢ ¢ v « .« . 19
12. Network for example 3 . .« . ¢ o o o ¢ o ¢ o o o o o & o« o o 22
13. Network for example 4a) . « ¢« ¢« ¢ v v 4 ¢ 4 e s o o 0 oo . 2k
b, Aclosed circuit « « o « o « v & o o ¢ o s 4 o 4 s a0 a0 . 28

15. Illustration of equivalent circults . « + ¢« ¢ ¢ ¢ ¢« v ¢ o & 29

- 111 - SEL-63-022

J R T



I. INTRODUCTION

Recently much interest has centered on obtaining a rigorous
theory of networks and their properties. 8Such interest seems to have
been originated by McMillan and Raisbeck;* and heas culminated in
. geveral detailed theories.z Of especial note are the results of
& Youla, Castriota and Carlin and the extensions of Zemenian. However,
although these are quite rigorous, they are, we feel quite complicated
for what is required. Further these treatments are strictly limited
to linear, time-invariant, passive networks and even in this case are
open to several interpretations which can lead to contradictory

5 results.3

g Here we present a basic theory of what we believe to be the most
% general types of conceivable networks. For this we abendon the

I

il operator concept, which we feel is more appropriate to control system
é studies, and revert to the concept of allowed pairs, whose origin can

be traced to McMillan. The program is to define a system, a network,
and an n-port in terms of infinitely differentisble functions of
support bounded on the left. The major properties of such n-ports are
then defined, such as linearity, time-invariance, passivity and
solvability. Such physical networks are then extended to idealized
networks and more generalized variables through the use of the theory
of distributions. Once this is done, general descriptions of a large
class of linear, time-invariant networks can be given by using
exponential variables. At this point the (bilateral) Laplace transform
approach can be used in the standard menner.

The reader is assumed to have a working knowledge of elementary
matrix theory, as well as & small knowledge of the theory of distribu-
tions., The latter however, isn't used until Section IV, and it is
aveilable in a companion report.h Points which are of interest, but
supplementary to the main portion of the theory are expanded upon .
the appended notes.

* The superscript numerals refer to the notes at the end of the report.

-l SEL-63-022
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IT. SYSTEMS, NETWORKS & n-PORTS

We begin with the notions of systems and networks. Consider a
collection of physical elements which are connected together to form
some device. At this stage the entities are not restricted, they may
be electrical, mechanical, thermodynamical, etc. For the present it
is sufficient to look at the device at the access points, called
terminals, and thus essentially ignore the internal construction. In
general the device will have k such termirals which can be consecutively
labeled fTJ, J=1, ..., kK, where k may in fact be infinite. In i
order to obtain a mathematical model, we assoclate with the device two
column vector varisbles, f(t) and g(t), of k entries, with the Jth
entry being associated with J 5 f and g are called conjugate
variables and are taken such that 2 g is the total instantaneous power
entering the device, here the superscript tilde denotes matrix trans-
posi‘cion.5 Several ways are aveilable for choosing the variables.

In the electrical case, choosing f as voltage and g as current, two
possibilities are shown in Fig. 1.

a) b) -
FIG. 1. POSSIBLE VARIABLE CHOICES.

SEL-63-022 -2-
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We will let $+k denote the set of real-valued, k-vector,
infinitely continuously differentiable functions of the real tine
variable, t, <« < t <o, with support bounded on the left.6 Further,
let fDm‘ be the same as 5)+k, except that the support is bounxied on
the left by a fixed constant tN’ tN may be infinite. For a given
device we will then postulate that ty exists and that! geD "D,
ge D +kﬂ ) Nk by 18 to be interpreted as the crestion time of the
device. This restriction on the variable is a physical one, siace
such quantities appear to be of the type actually mea.sured.8 However,
by a limiting process we will later extend the domain of definition.

Novw given a specific device, some constraint, C, is placed upon
the f and the g. We will incorporate in C the fact that f and g must
be conjugete. For simplicity we will then denote these constraint
requirements by fCg, which can be interpreted as follows. Given an f,
which, by virtue of the constraints, is allowed at the terminals,
there is an accompanying set of allowed g's. Thus we can speak of
ailowed pairs of variables £, g. The set of all allowed pairs then
serves to completely describe the device, which we define as a

s

s s PTIRERR  TES VE

k-access system, 8. 1In more precise languege, given tN’ a system is

defined byT
S = ((£, gl £,ge D +kﬂ fDNk) fcg} (1)
Note that although a system may be created at tN = <o, it can't. be

excited until some finite time, in this formulation. If the variables
are electrical, we call the system a network., For networks we will
assume f to be a voltage vector.9 The remeining treatment will be
limited to networks.

As an example consider a resistor § e OfF resistance r, which was
creeted with the universe, tN = _”.10 We can then apply any current,
ge D 412 8cross the terminals, The voltage is then £ = rg and

+

Sr = ([£, gllte 9_,_1; f = rg}
The allowed pairs for the resistor are of the form [rg, g] for any
ge D 41

-3- SEL -63-022
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™ 10 iy alvantageous 10 delete the extrancous data.

w

"BSeg the description given atove yields too much in-
for
4t ons the terminals of a retwo:h are associsted in n die-

3 7 ith excitations being applied only between the two
Of a pair. If such is the case, we take k even, and it is

conven’ " : + Vv relabvel the terminals, calling those for the Jj  pair TJ
and T I - » +v., 0= k/2. 1In this situation, if the current enter-
ing T:; i ejal to the current leav’ng ’1‘3 , this pair is called & port.
1f all @ T¥!nels occur as ports, the network is celled an n-port, N.
For ar. P t, only the n-vectors v(t) end i(t) of port voltages and
8 -2 of interest. The varisbles focr an n-port will be taken
ir Fig. 2a) with Fig. 2b) Ying a conveniert representation.

currer§’

as sh.

—

+ O

t<

b)

FiG. 2.

n-PORT VARIABLES.

§. e network of Fig.la), for exsmple. becomes ar n-port if k . 2n

&ndi R ,j = ij-l’ ij = 823_1} g?‘j = 0, for J = l, ceey n.
Carx§d' " ug vver the previous language we characterize an n-port by

4

choose v

¥=(ly 1llv1e 2 _Ngo., vci)

(2)

3
The 7 )1lowing examples serve to dr.’ine the symbolism for some
:Lmr'ﬁ" -ant and interesting l-port uad 2-port N,
. 3‘C~2 -l‘.-
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FIG. 3. REPRESENTATIONS FOR EXAMPLE 1.

Example 1:

a) The linear, time-invariant, resistor, capacitor, and inductor
are illustrated in Fig.3a). The resistor has allowed pairs

(ri, 1] for any ie $+l' The capacitor is described by

[v, a(ev)/dt] for any ve 5J+ An equally valid description, if

1
t
c£0 1s [% L i(x)dx, 1] for any ie 5>+l. Dually the inductor has

[d(si)/dt, 1] for any ie fD+1’ Here r, £, c are all real numbers.
b) The describing equations of the ideal transformer of Fig. 3b)

are

vl = I‘v2
12 = -'1‘11

vwith the turns ratio T real. Withv,,1;¢ 9., but othervise

l]]. Note that v

T
and 1 are not related and that not all v are allowed; only those

with vy = ’I‘v2 are acceptable. For each allowed v there sre an
infinite number of allowed 1. Since ﬁ = 0, the total power input
is zero, and, when T = 0, port one is a short-circuit while port
two is an open-circuit.

c) The ideal gyrator of Fig. 3c) is described by

arbitrary, the allowable pairs are [vz E] , il[

v, = 712
Vo=

with the gyration resistence, y, being real.l2

=5- SEL-63-022
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[7[_12], [il] 1, for any 1e D ,, are the ellowed pairs. As with
1 2

the transformer, the total power input is identically zero. If

y = 0, both ports are shorts, while, if we allow 7 = =, both ports

are opens.

The networks of Example 1 are all idealizations of actual physical
elemants, The inclusion of the ideal transformer is a convenience
vhich allows & comparatively simple mathematical treatment. However,
their use in physical structures is to be avoided since realizations
require closely coupled coils with extremely large self and mutual
inductances. Ideal gyrators have been practicelly realized only for
microwave ne‘t'.works;:l'3 their inclusion is for completeness.

In contrast to the networks of Example 1 there is a whole class
of degenerate networks which must be considered, in spite of the fact
that they seem to bear no relationship to actual physical devices,
Typical of these are the nullator, for which the only allowed pair is
[0, 0], and the norator, which is described by [v, 1] with v arbitrary
and i arbitrary but independent of v.l)+ These are, respectively,
represented by the symbols of Fig. 4a) and b) where realizations in
terms of the elements of Example 1 are also given., Such degenerate
networks are often valuable for illustrating ideas, checking results,
and investigating the generality of a concept.

1 1

@uT% P——c %lo o—{ =] Ei% P—: ?o

FIG. 4. NULLATOR AND NORATOR.

In general we will limit the treatment to n-ports, in contrast
to k-terminal networks. Although this appears to put a restriction
on the generality of the theory, such is not the case, since we are
allowing the use of transformers. Thus, Cauer has shown how any -
k-terminal network can be made equivalent to a (k-l)-port.]'5 The
procedure is illustrated for k = 4 in Fig. 5 from which the extension

SEL-63-022 -6-
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to arbitrary k should be clear.

y '3 —\AAAS
_ 1 1:1 '
{,’ +Ao 073

1:1

.
S

FIG. 5. CONVERSION OF 4 TERMINAL NETWORK TO A 3-PORT.

If, in Fig. 5, the variables are chosen as indicated, the network in
a) is described by the same relationships as the 3-port in b).16 The
process is somewhat familiar from transistor theory where the trans-
formers are omitted when treating the three-terminal transistor as a

2-port.

-7- SEL-63-022
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III. PROPERTIES OF n-PORTS

The description of N by the use of the allowable pairs is
extremely general. Using this generality, we can define some specific
properties in such & manner as to be applicable in the widest possible
context, After this is accomplished we can extend the notion of an
n-port and obtain more tractable descriptions for several important
classes of n-ports.

We begin with the concept of linearity which is conveniently
phrased in the [v, 1] 1anguage.l7
Definition 1:

N is linear, if for every [v;, i,], [¥,, 1,]eN and all real

constants, s,
(") [ay_l, ail]eN (homogeneity)
18
(A) [11+12, 31+_1_2]eN (edditivity)

Physically the definition means that at the ports superposition
holds. If N is not linear it will be called nonlinear. Apparently
every physicael N is actually nonlinear. At best any existing N will
satisfy definition 1 for only some pairs and some a. Linearity is
then an idealization which is strictly only valid in practice over
some range of the variables. In spite of this, most of the theory
will be limited to linear N. This is Justified by the fact that a
first approximation to a nonlinear N is & linear N, Further, very
general results are available for linear N, while results for only
specific nonlinear networks can be found.

The N of Example 1 are all linear while the network described by

[+'Ji—é‘ , 1] 18 not a linear N, if 1 is arbitrary. For control systems
an important nonlinear network is the l-port defined by the curve of
Fig. 6a) and called the saturator. Another nonlinear N is the network
of Fig. 6b) for which

[0, E/r] + [v, (v+E)/r] = [v, (v+2E)/r] # [v, (v+E)/r]'

SEL-63-022 -8-



with E a fixed function in £D+l. Here the fourth and the first two
pairs are allowable while the third one is not.

v E v

a) b) c)

FIG, 6. NONLINEAR N.

Some interesting l-ports show that homogeneity and additivity can be
separately violated. Thus the N for which v and i take on only integer
values for t > to, but for which v and i are in fD_Ll for all t,
satisfies the additivity requirement but not the homogeneity one. The
double-valued l-port described by the curves of Fig. 6c) possesses
homogeneity but not additivity.lq

The ideal diode of Fig. Ta) is another useful nonlinear N.
Using it in the linear network of Fig. Tb) shows that a network

constructed from nonlinear elements need not be m:mlinea.r.z0

1]
-

=
-

a) b)

FIG. 7. THE IDEAL DIODE.

In passing, it is worth point out that the set of allowed pairs
for a linear N forms a vector space over the field of real numbers,
21
if we define

-9- SEL-63-022
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aly, 1] = [av, ai]
[Il: .!-.1] + [!2: }.2] = [Il“'!z: .1;1"12]

The second concept of interest is that of time-invariance.
Physically we would like this to mean that no elements inside N have
parameters which change in time, In terms of the terminal behavior
this is best phrased in the following man.ner.22
Definition 2:

N is time-invariant, if for every [v, ileN there is a [v , i leN

such that, for every real, finite, constant v > O,
[x(t), 1(t)] = [¥ (t+r), 1 (t+r)] (3)

In this we are obliged to take 1t > O since, in general,
v,ie Dy . Pictorially v and v_ are related as shown in Fig. 8.

v (0

for ,/""""//’—-

¥ *
[9" * I'N Nt
FIG. 8. VOLTAGES USED IN DEFINITION 2.

If N is not time-invariant, it is only logicel to call it time-varying
or time-variable. The networks of Exemple 1 are all time-invariant,
if the parameters are independent of time. Thus for the capacitor any
[v(t), d{cv(t)}/dt] has [v(t-t), d(cv(t-T)/dt] allowed for any ve 9+1
and any 7 > O, when c is a constant, However, if ¢ = t then

[v(t), a{tv(t)}/at] = [vb(t+¢), io(t+r)]
implies by a simple change of variable

vo(t) = v(t-1)

1°(t) = d{(t-1)v(t-1)})/at

But for v > O this 10 is not allowed since such a vy requires a
current of the form

SEL-63-022 -10-
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d[tvo(t)}/dt = d(tv(t-T1))/dr

Thus 1f ¢ = t the capacitor is time-varying, which lends some
credibility to the definition.

As with linearity, time-invariance is an ldealization which
epperently can never occur in nature. This statement is Justified by
the fact that most networks must be built., Although it 1s possible to
conceive of networks existing since t = -, as Shelley's universe,lo
the most interesting devices are presently being conceived. However,
a study of time-variable networks appears to be in its infancy. If N
is time-invariant, it can be extended from g+nm$Nn to D, by
assuming 3) to hold for finite v > O.

Another concept of importance is that of passivity. This notion
is somehow tied to the presence of internal sources, however, the
negative resistor shows that conceptually, at least, the source idea
isn't quite what is desired. Passivity is best defined in terms of
energy.23
Definition 3:

N is_passive if for every (v, ileN and every finite t
' 't
e(t) =L F(r)i(r)ar > 0 (4)

If N is not passive it will be called sctive. In contrast to
linearity end time-invariance, passivity can actually occur in nature.
The transformer and the gyrator, as well as the nullator, are passive
networks for which &(t) = O.2h If the describing parameters of the
resistor, capacitor, and inductor are positive constants, these are
passive N. For instance the capacitor has, recalling that v(-=) = 0,

t
e(t) =\/ﬁ cv(r)ggizldr = cvz(t)/z

T

Note that if ¢ < O, the capecitor is an active network. The passivity
of a given device will sometimes depend upon the point of view taken
vwhen defining the mathematical model. For instance, if only the

small signal behavior of a transistor is considered, the transistor
is active. However, if the blas sources are considered as being

-11- SEL-63-022



externally connected the transistor is passive.

Another property which has been greatly ignored, but whose
importance has been pointed out by Youla, is that of solvability.25
Definition k4:

N is solveble if for every ee D _mﬂ ) Nn the equation

eg=y+1
is satisfied by a unique [v, ileN

Here we can consider a new n-port, called the mugmented network,

N,, assumed created at t., as shown in Fig. 9, with (e, E]eNa.

N

r—————"——=-"—="===7"
IS |
. — 2 BN -0 |
[} . |
- I~ |

:.I —0—
N I
| o '
- i

FIG. 9. AUGMENTED NETWORK.

Solvability doesn't seem to be an idealization, 26 assuming it, =
matrix description will be guaranteed in the linear, time-invariant
case. The open, the short, and the passive networks of Example 1 are
all solvable while the mullaor, norator and negetive unit resistor
are not solvable.

If N has any of the properties of linearity, time-invariance or
passivity then Na has the same proper'l'.ieta.27 This is not the case
for solvability &s is seen by the original N being a minus two ohm
resistor. However, if N is passive and solvable then N o BECuS to also
be solvable.

Although the notions of linearity, time-invariance, passivity and
solvebility are the most fundemental concepts with which we will work,
there are several others of interest. Among these is that of

SEL-63-022 -12-~
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reciprocity which stems directly from Maxwell's equa‘l::l.ons.28
Physically a reciprocal network should have the voltage response due to
e current excitation independent of an interchange of response and
excitation points. Mathematically this is formulated in the following
ma.nner,29 where the normal level asterisk denotes convolution, in this
case of two vectors.

Definition 5:
N is reciprocal if for every [xl, 11], [_!2, _1;2]¢N we have
vl = l’.g*il (6)
The difference between the power input to a network and the
forms in (6) should be observed. In the latter, variables for the
first measurement are convoluted by their conjugates for the second
measurement. In contradistinction to the use of the words time-verying,
customary usage requires that the class of nonreciprocal networks
contains the class of reciprocal networks. It also appears that
reciprocity is an idealization.
A transformer is a reciprocal 2-port, since
[Tv, , v, l¢[1 =0=[Tv, , v, {1
2" 2’ 2L

-7y -1
1, L

In contrast, the gyrator is a linear, passive 2-port which is not
reciprocal, if y # 0, since
[7121’ -7111]* ilz i 7(112121-111122) i -[7122’ -7112] ill
25 2y
There are many linear 2-ports which are not reciprocal, but only one
such l-port, the norator. The ideal diode of Fig. 7 is a l-port which
is nonlinear, time-invariant, passive, solvable, but not reciprocal.
The notion of causality is of philosophical interest. Physically
this means that the application of some variables at time t o causes
other variables to appear at time tl > to. We believe that by any
mathematical theory it is impossible to tell what is a cause and what
is an effect. Thus, we limit our ideas to the concept of antecedance

=13~ 8EL-63-022



which 1s sometimes confused with causality.3°
Definition 6:

N is antecedal if for every t_ > ty there are [0, 1(t)], [v(t), OleN
for <=« <t < to, end for every such pair

a) [0, i(t)]eN implies 1(t)
b) [v(t), OleN implies w(t)

gfor-<t<t°
gfor-eo<t<to

The resistor, inductor, cepacitor and nullator are all antecedsl,
while the transformer, norator, opens and shorts are not. A concept
somewhat related to that of antecedance is that of single-valuedness.
Definition T:

N is single-valued if every [x, _!._]eN has 1 uniquely determined by

v and v uniquely determined by i.

Typlcal single-valued networks are the resistor, inductor, nullator
and gyrator. The saturator, transformer and norator are not single-
valued. Clearly every antecedal N is single-valued but the converse
need not be true, as is seen by Fig. 6b). As we shall see, the
restriction of variables to 5D+ rules out the non-antecedal and non-
single-valuedness of some networks.

Almost every synthesis method is based upon the synthesis of loss-
less networks and hence the next definition is of some importance.3l
Definition 8:

N is lossless if

S) N is solvable and
P) N is passive and
L) for every ee 9)+anDquL2n

g(x) =Lm§(f)1(r)dr =0 (7)

Here e is v + 1 as in (5). Relaxing the L, requirement causes trouble,
since variables which don't vanish at infinity cen give a finite, non-
zero &(w). The passivity requirement is a convenience which will be
used to assure that v and i will lie in L2n if e does. Relaxing the
passive requirement allows the active capacitor with ¢ = v as a lossless

SEL-63-022 =1k~
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network; however, the capacitor c = v2 would still not be allowed since

[}
3v3dv need not exist for ee¢lL_,,. The linear, passive inductor and
21 ’

capacitor, as well as the gyrator and transformer, are lossless, while
the nullator and resistor are not. A network constructed only of loss-
less elements need not be l-ssless, a&s is seen by observing the inductor-
capecitor equivalent circuit of an infinitely long tranemission-line,
which has a purely resistive input impedance.

=15~ SEL-63-022



IV. EXTENSIONS

Using the theory developed so far there are idealized situations
which can't be considered. For instance we can't as yet excite with
unit step functions or impulses, or handle initial conditions in the
customary wey, and a perfect DC battery doesn't qualify as a network.
We therefore now relax some of the physical constraints and cover
these and similar cases by taking suitable limits.

We will let D ' denote the real-valued n-vector distridbutions and
53' be such distributions with support bounded on the left, fD m 18
the same as D-;-n except the support is bounded at tN All the desired
results will then follow from the fact that fD+ is dense in both ;'Dx'1
and SD' ,» that is, eny distribution in D! or D} 1is a limit of a
sequence of infinitely differentiable functions in fD .32

For example the idealized network of Fig. 10s) results by taking
the 1imit of a sequence of networks of the type of Fig. 10b) where, as
a distributional limit

3_13113 = u, uJe 5D+l’ u = unit step

A typical uy is shown in Fig. 10c)

im ' O
’ Eu(t) E“I(’)

a) b)

“i(')
. 1
{ t
-2/ -V/i

<)

FIG. 10. LIMITING NETWORKS
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If in Fig. 10c) we replace the points -1/J and -2/J by -J and -2J,
then when the limit is taken, u(t) is replaced by the constant 1 for
all time. This then allows censideration of perfect batteries. Since
initial currents in inductors and voltages can be considered through
the use of unit step functions, the above limiting process allows the
standard procedure for incorporating initial conditions. The smooth
functions of Fig. 10c) physically mean that such smooth variables, are
the ones actually appearing at terminals when a finite network is
constructed.

In general it is hard to state exactly when extensions to dis-
tributional varisbles can be made. For instance the nonlinear resistor
r = 1 can not be extended to impulsive currents i = &, since 82 is
undefined.33 However, in the linear, time-invariant and solvable case,
to which most the remainder of this work is restricted, we can always
extend Na.’ end hence N, to distributional e and i in the following way.

By the solvability of N, if a sequence {e J) has e J-»O then IJ""‘_i. 3
end these tend to a unique value. This value can only be zero, since
by linearity [0, OleN. Consequently, if e 5*Q then 1,40 and N 1is said
to define a continuous mapping, defined as

1= Y_[el

Now, exciting with {e(t+t)-e(t)}/7, the current becomes by linearity

ya[ﬂt_’”_'zi(ﬂ] = (Y le(t+r)]- Y le(t)]}/x

But by time-invarience, for T > O, we can write this as (i(t+r)-1(t)}/~.
Teking the limit as 7+0 we see that

ai/at = Y [de/at]

In other words the continuous mapping ‘Ba commutes with the operation
of differentiation. Considering any ee fD_;_nf'\ fDl'In’ by the denseness
of 5)+an SDNn in fDlnﬁ 91'«:1 we can find a sequence of e ¢5)+an k)]
such that e ve. Applying these e, to N yields 1 Jefl)mf\fo No’ 304
by the continuity of the mapping, 1 J-i vith ie i)l'm' By first re-

stricting e to ee ﬁ)l'mﬁsr'l, vhere & 1is the set of n-vector distribu-

tions of compact support, we see with Schwartz, since -] & is continuous

Nn
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end commtes with differentiation, that Y a Co0 be represented by an
nn matrix, convolution operator, ya.3h
That is

I
"

Y re (8a)
(81 -y, I*e (8b)

wvhere 5 1s the unit impulse and ln is the nxn identity matrix, By
choosing the entries of e to approach impulses, we see that the entries
l'ﬂn and, therefore, have support bounded on the left, if
ty > -=. We then extend (8a) from 2‘91'111055 to any e for which the
convolution is defined. If the columns of y, are in 94'_11, which 1s
always the case if tN
then (8a) can be used for any ee .‘D_'._n, in which case ie fD"m results.
0f course this extension coinsides with the one obtained by letting
T < 0 in Eq. (3) when ec fD+n.35

To illustrate this procedure we consider s familiar example.
Example 2:

Consider a linear, time-invariant inductor. The augmented

network is described by

e = i+gdi/at

We can extend Na. from ED+1 to unit step functions by either

solving this for e of the form of Fig. 10c) and taking & limit

or by inserting unit step functions directly in the differential

equation.

But

Y

of y, are in )

> -= or, as we will soon see, if N 1s passive,

8(t) = Lm (Ju(t)-du(t-1/3))
and thus we apply
e = ey = Ju(t)-Ju(t-1/3)
to the differential equation. This gives
1,(8) = 3(u(t)u(e-1/3)-e" ha(eyre S D k(1))

By a pover series expansion

e(-t+1/.5)/l = e't/‘+(1/33)e't/‘z+ order (l/Jz)

SEL-63-022 -18-
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Consequently, since e't/ by(t) = 8(t),

Um i, = (1/;)e't/‘u(t) = y4(t)
Using this with (8a) gives i for any ee 9;1. Note that the
ebove differentiel equation for i allows the solution

1= -(1/z)e't/‘u(-t) vhen e = 8. This solution is ruled out,
however, by our extension procedure.

If tN = ==, then apparently ee fD;_n need not imply that ie SD-'m‘
For instance the "network" for which i 3 takes the form of Fig. 11,
vhen e e £D+1 and €55, has e = 5 accompained by 1 u(-t) = Ve

L

A N

T
=i 1/} 1/j

FIG. 11. FUNCTIONS CONVERGING TO u(-t).

Such a network, if it is actually a network, presents somewhat of a
paradox, since inserting suitable e J-b into (8a) shows that the extend-
ed network has i J(-w);éo. That is, the original network and the extend-
ed network wouldn't coincide in this case; it appears than that
solvability essentially doesn't hold here,

Let fDI" be the set of real, n-vector distributions which are
2n
finite sums of derivatives of L2n vectors. If N is linear, time-

invariant, solvable and passive, then, as we now show, ee 5)£ implies
2n

i,ve D! . This is seen by noting that if ee 9! then aweel, for

== L2n - L2n =""2n

a any scalar in the set D of infinitely differentiable functions of
compact support.36 Now Qe = Osv4x¥i and O%e can by approximated
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arbitrarily well by e 5 $+n and hence so will be G*v and a#*i by
solvebility and the continuity of a linear, time-invariant mapping.
But

t t t
[ (%) (ame)dr = | (o%%)(owv)ars L () (s )ar+
L] oo

t
2 [ (o) (o )a (9)

By assumption the term on the left is finite and non-negative. The
seme holds for the last term on the right, by passivity and the fact
that the terms under the integral are approached arbitrarily closely
by fD+n vectors. Consequently the other terms, which must be non-

negative, are finite and ee Ds does imply 1, ve 5)1'_. . This result
n 2n
will show that the Laplace transform of Vg is enelytic in the right-half

plane. We now turn to such considerations.

Conslder a linear, time-invariant, solvable N with its domain of
definition extended as far into 91'1 as possible by (8). Let the
voltege of Na be

& = Regeptu(t+k)

for k real, p = og+jw & fixed complex number, J = /'-_1-, and E an arbitrary
complex constant n-vector; of course Re denotes the "real part of".

The resulting current is given by the convolution of (8a) as
" pt
_;_k(t) = Re{[\[ ya('r)e k’ru(1'.-'t'+k)d'r]_Et’: )
00

By linearity the real part can be teken at any stage. For convenience
we then drop the Re and assume it to be inserted at the end of any
calculation. Taking the limit as k+» we get

([j y (r)e Frar)e(t) = ¥ (ple(t) (108)

Eept (10b)

1(¢)

e(t)
This process can only be carried out i1f the term in brackets, Ya(p) s

which is the bilateral Laplace transform, Lb[y a] » exists for some p.
< o, such that Ye(p) exists for

In general there will be some o P

SEL-63-022 -20-
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o, <0< .- Equation (8b) gives a similar result for ¥; such a
representation holds for v if and only if it holds for i by (8b),
vhere Lb[bln] = 1. If alinear, time-invariant N can be extended by
this, or any other, method such that v = Xept and 1 = ;ept are paired,
then we will call N, Lb-regresentable. The above shows that most such
solvable N are Lb-representable, however, some nonsolvable N, such as
the nullator, are f.b-representable.?"r

An important cless of .(',b representable N are the linear, time-
invariant, solvable, passive N. For such N, o P <0, 0. =% and con-
sequently, in this case Y (p) is apalytic in ¢ > O. This follows from
the fact, as we saw sbove, that ee 3)' yields ie fD' . Choosing the
entrles of e all zero except for one gmpulsive entry,nwe can isolste
any column of Yy by i= ya*g. The entries for ¥, are all zero for
t < 0 since othervise, convoluting with Qe 5), Q=0for t< O, we
would have o%i = ya*(o,*g) nonzero for t < 0 which would contradict (9),
all for the above impulsive type of 9_.38 Thus, for the type of N under

consideration, we know that the columns of Yy, are in SDI'.. and zero
2n
for t < 0. By the very definition of fo,. we can write, where k is

finite, an
X

v, =Z1 a¥(e, ,)/at?

with the columns of the nxn matrices fa 3 in L2n and zero for t < 0.
Taking the bilateral Laplace trancform gives
k

gly,] = 1,(») ?;ﬂbtfajl

By a well-known theorem of Laplace transform theory, each f‘b[fa J] is
analytic in o » O, and almost everywhere on ¢ = O, and by this last
formula for Ya(p), the same result holds for Ya(p).39 That is Ya(p),
exists and is analytic in ¢ > O and almost everywhere on ¢ = 0. For
networks with rational Y (p) this gives a stability result, since it
says that no poles of Y can lie in the right half-plane

The network for which e =25 ylelds 1 = exp[t Ju(t) 1s not
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f,b-representable. From the above comments on the existence of Ya(p) »
this network can't be passive, but a direct determination of this
through (4) seems hopeless.

By exciting N, with exponential g(t) we obtain, by (10) and (8),
exponential responses 1 and v for .(',b-representable N. That 1s

e(t) = gept ylelds (11a)
1(t) = 1Pt (11b)
x(t) = yeP* (11c)

For such N we therefore extend the domain of definition further by
allowing [_Y.ept, ;ept]eN. We can then work entirely with Laplace
transform quantities by defining the frequency domain network, N(p), as

N(p) = ([¥(p), I(p)]| [¥eP®, 1eP*1em) (12)

For the frequency domain network, time no longer appears and we work
with functions of the complex variable p. As is well-knowxi, for
constraints which are represented by ordinary differential equations
with constant coefficients, N(p) is simpler than N to work with, since
the constraints become albegraic. The main advantage of such a
description probably shows up when synthesis is considered.
Example 3:

If we consider the network of Fig. 12, we see that N_ is

a
described byb'o
2
el - 21433024 4
dt dt 2
at
‘‘‘‘‘‘‘‘ =
i
|
I
|
|
N

SV RS U Y

FIG. 12. NETWORK FOR EXAMPLE 3.
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Letting e(t) = BeF®, 1(t) = IeP® gives

(14+p)E = (243p+2p%)I
Since

Y,(p) = (p+1)/(25°+3p+2)

we see from the Laplace transform interpretation, that o > -3/1&
since the singularity furthest to the right is on the ¢ = -3/1&
line. Since e = v+i, N(p) is described by

2
[{(2p +2p+1)/(p+1))I, I]eN(p)
for eny complex I and ¢ > o, = -3/4

Note that if a physical N is given, defined by (2), then N(p) is
unique, when it exists. Further, if N(p) is given such that Ya(p)
exists, then by finding the inverse Leplace transform, f.;l[Ya(p)], and
using (8a), a physical network, N, is well-determined.

Limiting ourselves to the linear, time-invariant case, if
0, < 0., N(p) is seen to form a vector space over the field of

functions of a complex variable defined in ¢ 2 <0< L if we define

aly, 1 4 [ay, a1]
and
V,, L1+ (V,, L1 A [v,+V,, L+L,1.*
Iy =t e 2pd 2 Wt 4t
As a result of the contraint defining N, we see that the vectors
[V, Il in N(p) form an r-dimensional sub-space of all possible vectors
[V, I]. If ve arrange V and I in a 2nxl column metrix, [!], then ve
I

can find some matrix M(p) of complex functions defined in o

an. of rank 2n-r and order mx2n, where m > 2n-r, such that

M(p)[-Y] = 0 constrains V and I to N(p). If 2n-r > n, we choose
I

3<°<°r

m = 2n-r while if 2n-r < n, we choose m = n such that M is nx2n.
Partioning M into M = [A, -B] then ylelds the fundamental equations

A(p)¥(p) = B(p)I(p) (13)
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These equations constrain V and I to N(p) and thus describe N. Of
course the A and B are not unique, since M(p) can be premultiplied by
any nonsingular mxm matrix, with a description of the form of (13)
stl1ll resulting., As is seen by the nullator end norator, these
equations can be used to describe other than solvable networks,
Further, for a given network (13) can be obtained in many ways. For
instance, as seen through (10s), A(p) and B(p) are essentially
Laplace transformed quantities and hence (13) can sometimes be
obtained by taking Laplace transforms of describing equations.

A more satisfying proof of (13) can be given if N is linear,

time-invariant, and solvable, as then

[
l

Y xe (8a)

A4

[61n-ya]*g (8v)
Convoluting (8a) by [Sln-ya] on the left gives
[E’ln'ya.]'“1 = [Bln-ya]*ya*g = [ya-ya*ya]*g = ys.')('[m‘n'ya]'“'2 = Ya*X

or

Y¥v = [81,-¥, J*i (1ka)

Taking bilateral Laplace transforms
Y (p)V = [1-Y _(p)II (14p)
This is egain (13) with A and B explicitely evaluated; in fact
A and B are here nxn.
Example U4:
e) Consider the network of Fig. 13

FIG. 13. NETWVORK FOR EXAMPLE 4s).
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The current flowing to the right through the capacitor is
1, = cd(vl-vz)/dt

The rurrent il is

1 = -v2+cd(vl- 2)/dt

while the current 12 is

i, = vl-cd(vl-v2 )/at

Letting v and 1 be of exponential form gives

[pc -pc-l] [vl =1 o [Il]

-pc+l pc Va 01 I2

This 1s (13) with A(p) taken as the admittance matrix. Note
however that

M AN
1 1 Vz I2
also describes the network since we have merely premultiplied by

N

b) The nullator is described by

N Wi

for which A and B are not square.
¢) The norator is described by

(ollv] = [0][x]
d) The transformer is described by

Sl B

0o 0 Vz 1T I2

Note that, as with the nullator and norator no inverses exist
for A and B.

e) The voltage inversion negetive impedance converter is defined
by
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[l l] [Vl] = [0 0] [Il]
0 O Vz 11 12
By choosing A and B in different ways one can define new and
perhaps interesing linear, time-invariant networks. Pre-multiplying
(13) by a non-singular matrix C(p) we get
CAY = CBL (15)

Properly choosing C gives the familiar network descriptions. For
instance the impedance, admittance, and (noma.lized) scattering matrices
can be, respectively, defined by

Z =A™ 1p; ¢ = a7t (16a)
Y=3;c=-2" (16b)
8 = (B+A)"(B-A); CA = 1 -8, CB = 1 48 (16c)

At this point we omit any physical interpretation of these and merely
point out that, since

¥-I=(1-2Y,)E = 5(V+I) = SE
by (16c) we have
s(p) = 1_-2Y_(p) (11)

As was shown before (11), every linear, time-invariant, solvable and
passive N possess & Ya.(P) which is in fact analytic in o > O and exists
for almost all p = Jw. Consequently, by (17), we conclude the funda-
mental result that every linear, time-invariant, solvable, passive N
has & scattering matrix which is anaiytic in ¢ > O and exists for
elmost all p = Jo.'2

Equation (13) is generally only defined for a certain region in
the p plane, that for which the appropriate Laplace transform converges.
Whenever possible, we extend this region by analyticelly continuing
N(p) to the left and right. Since N(p) may then become multiple-valued,
whenever we meet a branch point Q+jB we make a linear branch cut to
-x4+JB, if on the left, or 4m+J)8 if on the right, and thus make N(p)
single-valued. For instance a branch point is met at p = 0 when
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' considering the infinitely long R-L cable, with Z(p) = +p originally
defined only in the right-half plane. This analytically continued
N(p) is identified with the original, since they both coincide in the
original domain of definition.

Natural frequencies are conveniently defined in terms of the
analytically continued N(p). P, is called a short-circuit natural
frequency if [0, ;(po)]d(po), ;(po);lg. Physically this means that
some nonzero exponential current can be forced into the (extended)

network when zero voltage appears across the terminals. For instance
a short-circuit has every D, as & short-circuit natural frequency.
From AV = BI ve see that B(po) must be singular at a short-circuit
natural frequency and hence, if Z exists, (15a) shows that P, is a
zero of the determinant of Z. The definition then corresponds to the
calculations normally made and generalizes that of "frequencies
present due to only initial conditions."h3 The definition also holds

. for non-meromorphic Z mstrices, for instance, for the infinitely long
R-L cable mentioned ebove, p = O is a short-circuit natural frequency.
Dually P, is an open-circuit natural frequency if [X, Q]eN(po) for
¥(p_)#0.

In synthesis it is easiest to work with passivity conditions in
terms of N(p) in place of the N of definition 3. Since, in the linear,
time-invariant, solvable case, after extending from 9 to ED n? Ve
can approximate any [Re VeP®, Re IeP'leN arbitrarily closely by &
sequence of allowed pairs [xJ(t) y 1 J(t)] for the original N, passivity
necessarily requires

Ep(t) =Lt(Re Zept)(Re _;[_epb)dr >0 (18)

for all t and every [V, IleN(p) for every p in Re p > O.
In many situations it is desirable to investigate the internal
structure of & network., For this we define the notion of a circuit.
Definition 9:
i . A circuit C is an interconnection of networks Ni’ i=1, ..., k.
By an interconnection is meant that the nl-vector of Nl, the
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n,-vectors of Na, etc., are interrelated by Kirchhoff's laws. Here

k 1s an integer or infinity. We can connect external leads to a
circuit such that looking in from the outside C looks like an n-port.
Of course C must be constructed at a creation time greater or equal to
the creation time of any of the interconnected networks. It should be
pointed out that a circuit can be closed upon itself, that is have no
terminals, as 1s seen by the circuit of Fig. 14,

(.,

o

FIG. 14. A CLOSED CIRCUIT.

The concept of a circuit allows us to conveniently look at finite

networks.

Definition 10:
N is finite if it cen be constructed as a circuit consisting of
a. finite number of the networks of Example 1 (resistors,
inductors, capacitors, transformers, gyrators).

In essence, a finite network is defined by an equivalence class
of circuits.hs Thus, if circuits, Cl and C2 have external leads

connected such that they define networks Né and Né » then we will
1 2
call C, snd C, equivalent (at the terminals), written C,~C,, 1if

K, =N, . For example, the circults of Fig. 15a), assumed to have
1 2
ty = =, are equivalent. However, the circuits of Fig. 15b), which

are assumed created at tN = 0 with different initial voltages, are not
equivalent. This latter result only seems reasonable, since their
responses to different excitations will be different.
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FIG. 15. ILLUSTRATION OF EQUIVALENT CIRCUITS.
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V. CONCLUSIONS

Using what appear to be the moet basic ideas, an n-port has
been defined as well as the various types of properties that can be
possessed. In contrast to other such theories in the literature, such
an n-port can be nonlinear, time-varying or active, In the linear,
time-invariant, solvable cases the types of variables allowed can be
extended from infinitely differentiable vectors of support bounded on
the left to distributional n-vectors. The varisbles in many such
cases can also be extended to be of exponential form, this always
being true in the passive case.

The definition of a network is different than commonly found.
That is, we don't define a network in terms of operators but as a
collection of pairs of variables. Our justification for this is that
in the operator description, L[f] = g, the varisbles f are best
thought of as inputs while the g are to be considered as outputs.
However, for a network it seems that sometimes a variable will be used
as an input while at others times the same variable should be considered
as an output. For instance if a voltage source is applied to a resistor,
one naturally considers the voltage as the input and the current as the
output. But one can equally well apply a current source to the same
resistor in which case the current would be considered as the input.

It seems that the operator description is most appropriate in studying
control systems since, in L[f] = g, one here would wish to control an
output g by the use of the input f. Of course we did use the operator
idea in the extension to distributional varisbles. This was done,
since we worked with the augmented network where we always considered
e as the excitation and either i or v as the response.

The definitions of network properties must be given in terms of
the original variables, in place of the distributional or exponential
variables, since otherwise meaningless results occur. For instance,
the energy integral Eq. (4) can't be evaluated for an impulse of
voltage on a capacitor., Further, an inductor would not look reciprocal,
since
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u(t), v, = 08(t)

and

i I = constant, v, = 0

2" 2

are allowed with distributional and exponential extensions, but
£8%I = LI£0 = O%u

if
10, ££0

In several works in the literature it is postulated that a
network 1s something possessing the various properties of linearity,
time-invariance, passivity and sometimes solvability. However, it
seems to us that this is somewhat a misuse of the concept of a
postulate. It seems that what should be postulated is the existence
of physical devices subject to a mathematical description of the form
cf Eq. (2), in the theory presented here. The various properties of
such a description can then be checked to see if the given network
possesses such a property, as passivity, say.

From working with the various definitions of part b), it seems
that most of these definitions are as desired. However, it may be
that some future considerations would require some sort of modifications.
For instance, the definition of solvable is important in the theory
of linear networks., Perhaps, though, there is some better concept
which contains that of solvability, which is needed for the study of
nonlinear networks. Similarly, reciprocity is defined for general
networks, but perhaps with more study it would become necessary to
restrict it to purely linear networks. Like-wise the definition of
lossless, which hasn't been worked with much, may not be the most
appropriate one.

The "network" associated with Fig. 11 raises interesting
questions. For instance by observing this, one wonders if perhaps
every linear, time-invariant, solveble K can't be made passive by
augmenting (as in Fig. 9) with sufficient resistance. If so, then it
would appear that even for active networks, the Laplace transform
representation should converge in a right half-plane.

~31- SEL-63-022




1.

HOTES

See McMillan, [Ref. 1], and Raisbeck, [Ref. 2]. McMillan's
approach is closer to the work presented here than any other.
Raisbeck, although not quite so rigorous, is the starting point of
most recent studies. McMillan essentially assumes linearity,
time-invariance and reciprocity while Raisbeck assumes the
existence of an impedance matrix; both assume passivity.

See Youla, [Ref. 3], Zemanian, [Ref. 4], as well as Konig, [Ref. 5].
These papers are all based upon the concept of a linear transforma-
tion. [Ref. 3] works in Hilbert space and gives an excellent but
abstract theory for the scattering matrix. [Ref. 4] works with
distributions with some interesting time domain results. [Ref. 5]
gives a rather complicated theory but has some interesting
impedance representations. i

See Newcomb, [Ref. 6]. This shows that by a suitable choice of the
operator domain of [Ref, 3] , networks which one would normslly
consider as passive, causal and single-valued, need not have these
properties.

See the second section of [Ref. 35].

Typical conjugate variables would be force and velocity, voltage
and current, temperature and entropy change. One wonders if such
a shoice can be made for biological systems.

Intiuitively, by the support of a function of time, h(t), is
meant the set of t for which h(t) is non-zero. More precisely,
the support is the closure of the set of points in t for which
h(t)£0, [Ref. 7, p. 1T]. The support of a vector being bounded
means that the support of each entry of the vector is bounded;

We use the standard set theory symbols. That i1s, ¢ denotes
"contained in", ") represents "intersection", and A = {x|P(x))}
means that A is the set of all x such that the proposition P(x) is
satisfied.

We comment that fed +kqu , can not be replaced by fe S{)Nn if

tN = =», since then f would not need to have support bounded on
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If a measured entity were not infinitely differentiable, infinite
values would be obtained by the use of differentiators. This
argument 1s not too solid, however, since ideal differentiators
don't exist. One feels that impulses aren't alloved since many
non-linear devices can't tolerate them.

If g 1s glven as the voltage vector we merely relabel.

We assume for simplicity and with Shelley, [Ref. 8, p. 813], that
the universe has existed from eternity.

In german an n-port is called a 2n-pole with this nomenclature
being taken over into English by McMillan, [Ref. 1, p. 225].
McMillan's definition is the only precise one we know of in
English, but it holds only for finite networks. Certainly the
original use of the word port is imprecise, [Ref. 9]. 8ee also
the IRE standard, [Ref. 10], [Ref. 11].

An interesting analog of the gyrator results from plasma physics.
For & charged particle of mass m and charge q moving in a magnetic
field B with velocity -w;, we have n_i% = q-\;xi. If B 1s directed
only in the z direction with magnitude Bz’ this gives

v, ]=[° qu/m] v,
[’&y] [-qu/m 0 [vj‘

y :
where the cyclotron frequency w, = qu/m is analogous to 7y and

represents the rate at which the particle gyrates around the B
field.

For microwave realizations of the gyrator see Lax, [Ref. 12,

P. 544]. For low frequency realizations see Bogert, [Ref. 131,
where active circuits are used.

See Carlin, [Ref. 1k4], where these degenerate networks form a
basis for a synthesis technique,

See Cauer, [Ref. 15, p. 161]. Cauer calls the k-terminal network
a "complete 2k-pole".

Note that the variables for the lower right terminal pair of
Fig. 5a) are uniquely determined from the other variables by
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the use of Kirchhoff's lews. If sources are only applied at the
ports of Fig., 5b) the transformers can be omitbed and the network
redrawn as

17. The standard definition is in terms of operators, see Papoulis,
[Ref. 16, p. 82], or Youla, [Ref. 3, p. 106]. An alternate, but
somewhat complicated, definition in terms of the state has been
given by Zadeh, [Ref. 17]. This was slightly improved at a
later date, [Ref. 18], to include L-C networks, Essentially
Zadeh's definitions attempt to distinguish between linear
equations and linear systems. Thus in his terminology one system
could have different initial conditions, while in the theory we
present, the same "elements” with different initial conditions
define different systems. This latter viewpoint seems to be the
only consistent one when just terminal behavior is considered.
It does, however, have drawbacks when considering internal
construction.

18, If [Iy EJ]eN then for real 8 and finite m,

[Z '}'J,Z J__J]eN. However, for a linear N, this result
J=1 J=1
apparently need not hold for infinite m. We could postulate
that it does hold for m = w, but none of the theory seems to be
changed by such an assumption.

19. The fact that homogeneity and additivity could be separately

violated was essentially proven by Gerald Alonzo in the Stanford
graduate course EE 235.
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0f course anyone would be silly to build Fig. Tb) using diodes.
Practically the diodes wouldn't be ideal anyway and the resistor
equivalence would only hold as an approximation. The example does
1llustrate the fact stated, which would be taken as a weakness of
the definitions. Another exsmple is given in [Ref. 17].

For the concept of a vector space see Birkhoff, [Ref, 19, p. 162].
The standard definition for time-invarience can be found in
Papoulis, [Ref. 16, p. 83]. This essentially reads: A system is
time-invariant if g(t) is the response to £(t) then g(t-tl) is the
response to f(t-tl). Although the physical meaning of such a
definition is clear the mathematics is rather imprecise since, by
simply changing the variable, almost any system is (mathematically)
time-invariant).

Besides the definition given, others can be found. Shekel,

[Ref. 20, p. 269], defines a network as being passive if the
average power input in the sinusoidal steady state is positive.
This, however, allows a resistive network containing a negative
capacitor as passive. Railsbeck, [Ref. 2, p. 1511], requires only

e(w) =\Lw_?r:(-r)1('r)dr >0

This, however, seems to restrict v and i and since &(t) could be
negstive for some t < but still &(») > 0, this doesn't seem
reasonable., Youla, [Ref. 3, p. 110], allows complex excitations
and responses and then defines

g(t) = ReLti*('r)i(r)d'r

with & superscript asterisk the complex conjugate. We believe
that a more meaningful definition for complex valued variables
would be

e(t) =Lt(Re ¥(7)(Re 1(7))ar

Both of the latter &(t) agree with €(t) of (4) when the variables
are real.
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Youla, [Ref. 21], has shown that any realization of the nullator
using a finite number of the elements of example 1 must contain at
least one negative resistor and one gyrator. For this reason one
hesitates to call the nullator passive, In fact in early lectures
on this material the author inserted an extra clause in the
passivity definition to rule out nullators at any port. Such a
theory seems too ad hoc and we rely upon only the solvability
concept to rule the nullator out, when so desired.

See [Ref. 3, pp. 103 & 113]. Youla refers to the concept appear-
ing in two earlier works which we haven't seen as yet, those of
Wu and Toll. Essentially, solvability is assumed as a postulate
for anetwork in Youla's theory.

It seems to us that any truly physical device is solvable. This
is true for multiple-valued or hysteresis type characteristic
curves such as obtained for tunnel diodes or iron-core inductors.
If, for such devices, one knows the entire past history the device
will be in a unique "state" at any given instant.

These are easily established,

Linearity: For N, we have [ae, ai] = [av+aileN, since [av, aileN

=]1'=2 =1
since [v,+v,, 1 +i,]eN by linearity of N.

for every a. Likewise [e +e,, 1,+1,] = [w+vp+d 41, 1,41 ]eN,

Time-invariance: Consider [g, 1] = [y+i, ileN , then [y, ileN.
By the time-invariance of N, for ¢ > 0, [v(t), i(t)] = [!o(t”)’
1°(t+1')] for [zo, }olcN. Therefore [e(t), 1(t)] = [zo(t+r)+
lo(t-'-’r), io(t")] = [go(t-wr), _;o(tﬂ')] vhere [_eo, 101 = [_v_°+1.°,
_i_.o]eNa since [y , io]GN‘

Passivity: We have for N

t &t t
g (t) - L (F+1)1dv = L Tdrs L Tias

The last term is always non-negative while the next to the last
term is, if N is passive.

See Ramoc and Whinnery, [Ref. 22, p. 45L], where Maxwell's equations
are shown to yield Lorentz reciprocity. The result of [Ref. 22]

is in terms of phasor ¢uantities end thus we have replaced multi-
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29.

plication by convolution to convert to the time domain. The first
real use of this result in a rigorous theory seems to be in
McMillan, [Ref. 1, p. 236].

Matrix convolution is defined by replacing multiplication by
convolution in the definition. Thus AxB is defined by

Zaik*bkj' For finite, linear, passive networks this agrees with

the usual statement that for a reciprocal network the ratio of
response to excitation is invariant to an interchange of the
points of excitation and observation, [Ref. 23, p. 148].

The definition we give is valid for nonlinear, time-vawiable or
active networks but it 1s not clear if it is meaningful then. The
definition does make the following network nonreciprocal, since

VoL -V %, = B¥(1, +1, -1, -1, )
1 =2"=2' =1 1,7°2,771,772,

Note that if the current "excitations" for measurements one and
two are the seme, this network would look reciprocal (for these
excitations). In fact any reciprocal, solvaeble l-port is linear
since, with 1 = e-v, 21*12 = v *(e,-¥,) = iz*(gl-_l) requires with
e, = 88y, [iz-aill*gl = 0 or for the l-port v, = av, and i, = ai;
are in N. Similarly with e, = e)+e,, K :1*(_53-13) =
23*(31'31) or 21*33 = 13*21 and similerly 12*23 = 13*22 adding
gives (21*22'23)*(9—1"'32) = 0 or for the l-port [¥;4v,, i,+1 ]eN
and hence N is linear. It is not clear if such is the case for
n-ports.
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Sometimes a reciprocal network is called "bilateral," [Ref. 2k,
p. 875]. Although we have never seen a precise technical defini-
tion of the word bilateral, we would prefer to apply it exclusively
to l-ports meaning that current passes in the same manner into or
out of a device. The ideal diode would not be bilateral and the
concept couldn't be meaningfully applied to the gyrator.

30. Here Q0 is the n-vector of zeros.
A typical definition of causal is given in Youla, [Ref. 3, p. 111].
The definition so given allows the open circuit as causal but not
the dual network, a short-circuit., For this reason our definition
has two clauses. In [Ref. 3, p. 111] it is "proven" that "except
in pathological cases, linearity and passivity imply causality”.
However, as shown in [Ref. 6] we believe this only to be the case
when a proper interpretation of the concepts is used. Thus we
essentially assume some sort of "causality" by restricting N to v
and i in ®+n' An excellent discussion of causality versus
antecedance is contalned in Bunge, [Ref. 25].
A definition differing from that of Youla, but somewhat more
common, is that given by Peapoulis, [Ref. 16, p. 85]. This
requires the output to be zero until to if the input is zero
until t . Youla's requires that if Yy =), fort < to then
i, =1, for t <t . In definition 6 the existence of [0, 1] and
[v, 0] is needed to be sble to consider a) and b). Without such
a clause one couldn't consider the non-antecedal 2-port.

-2

31. Here L2n is the set of real-valued square integrable n-vectors.
That is feL, 1if

2n o
f F(o)e(r)dr <w

It seems that an alternate definition in terms of conservative
systeus, as studied in mechanics, [Ref. 26, pp. 3 & 347], could
be given. However, it also seems that such existing theories
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33.

3k,

35.

36.

don't have the complete generality conteined in the concept of &
network. Definition 8 is essentially that given by Youla,

[Ref. 3, p. 119].

Except for the subscript n, the notation is the standard one
found in Schwartz, [Ref. T, p. 25]. The fact that fD+n is dense
in fD;_n follows in a manner similar to Schwartz, [Ref. 7, p. T5].
A simpler proof follows from Schwartz, [Ref. 27, p. 22]). Thus
let a sequence of infinitely differentiable functions, ¢ 3 of 9 1
converge to &, ¢ J-b, where & is the unit impulse. Then, for any
distribution fe 911 we can form @ J*f and ¢ J*f—-b*f = f. 8ince
cpJ*f is in fD+l, this gives the desired result, after extending
to n-vectors in an obvious manner (component by component).

The impossibility of defining 52 as a distribution is shown in
Schwartz, [Ref. T, p. 11T7]. K3nig has shown how the concept of a
distribution can be extended, such that 8% 1s defined, [Ref. 28,
p. 48], Hovever, &.ufu.d under this definition.

See Schwartz, [Ref. 2T, p. 18 theorem X and p. 20], which states:
Every linear contimuous operation from either &' or 9 into D ’
commting with differentiation, is the convolution &(T) = S*T
with a fixed distribution Se D' and reciprocally. This gives a
rigorous Jjustification of the physical result that the response
of a linear, time-invariant system is found by convoluting the
impulse response with the actual input.

Schwartz's result is not for the matrix case, but by considering
separate components of e and 1, it is seen to yield the matrix Vg
At this point, at least when n = 1, it 1s possible to set up a
Mikusifiski's algebra, [Ref. 29], since the algebra ﬂ;rl has no
divisors of zero, [Ref. 27, p. 29]. This allows us to work with
more general networks than those later called .ﬁb-representable.
0f course (8) ylelds the same [v, i] pairs which originally
defined the network, by the definition of ‘.‘Ja.

See Schwartz, [Ref, 2T, p. 57, theorem XXV], where it is shown

that: In order for a distribution T to belong to 5)1" it is
P

-39- SEL-63-022



PR

3T.

38.

9.

ho.

necessary and sufficient that, for any ae D s a*’.[‘*ch, recall that
[ ]
fel, 1r[' |£(t)|Pat <

We could have simply obtained Ya(p) by taking the Laplace trans-
form of (8a). We feel that the physical insight of Ya(p) being
the response coefficient in (10a) for exponential excitations
lends motivation to the heavy use of the Laplace transform in
engineering work. The approach used follows that of Mason and
Zimmerman. [Ref. 30, p. 340].

Choosing t < 0 in Eq. (1-9) would give

0= Lt(a*i)(a*_v_)dﬂ i%a*i)(a*}_)dwi%a*i)(a@)dr

But each term on the right must be non-negative, by passivity or
the sum of squares, and hence zero.

See Widder, [Ref. 31, p. 80, theorem 10]. The theorem reads:

Ir £(t) belongs to L, in (0, ) then

R

2)
£.i.m. f(t)e"tdt

R
exists for ¢ > O and defines a function F(p) which is analytic

for ¢ > 0. Moreover
100 pt
F(p) =l £(t)e Fdt(o > 0)

the integral converging absolutely for ¢ > 0 and

&;g-*m F(U'"JCD) = F(Jw)

This is obtalned as follows. Letting Vo be the voltage

across the capacitor, plus at the top, Kirchhoff's voltage law
glves e = i+2(di/dt)+ve. Letting 1 and i be the current down
through the right hand cepacitor and resistor gives, by
Kirchhoff's current law,

i=14,dv/at =1, v =1

r
Therefore i = v +dv /dt. Solving the equation in e for Vo
adding this to itself differentiated and equating to 1 gives the

desired result.
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For the concept of a vector space see Halmos, [Ref, 32, p. 3], or
Birkhoff and MacLeane, [Ref. 19, ». 162].

It is also true that for ¢ > 0, 8 (p)
with & Eept' and & = Eep* vwith E real., Then

i (t) Y (p)Ee and iz(t) =Y (p )Eel’*t are the corresponding

s(p ). This results from
exciting N

currents. Conjugating i (t) we get
*
L,7(8) = 1.\ (p )zel’t
but this must be _:Ll(t) as 1t 1s the response to e,. Thus, since
E vas arbitrary
*, *®
r(p) =Y, (p)

which gives the above stated result for S(p). Z and Y are also
analytic in ¢ > O whenever they exist, since for instance

= (1.48)(1,-9)"

and Z becomes non-analytic in ¢ > O only where (ln-S) is singular,
but (ln-S) is non-singular everywhere in g > 0 if Z exists (for a
passive network), [Ref. 3, p. 119].

We comment that in the extension to exponential excitations, terms
r,t p,t
of the forms e T +e 2 , pl;lpz, haven't been allowed. This means

that the separate natural frequencies can be individually con-
sidered. For instance in working with (1T) we don't have to kill
off natural frequency terms by & suitable choice of initial condi-
tions, as is sometimes done, [Ref. 33, p. 418].

To see this form

e (t) e (t) = L [Re(VeP‘)Re(IeP")-v (v)lax

/ [Re(VepT)Re(Iepr)-v (1’)13(1') ]d‘r+L J Re(Vepf)Re(Iep')dr

J
where t 3 is the left bound on the support of v 3 and 1 3 By
choosing t J""' with ¢ > 0, by time-invariance, the second integral
tends to zero, while the first integral does also, since 1’-,3’ i 3

approximate the exponentials. Thus
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for every finite t and hence ep(t) >0eas¢ .1(*‘) > 0. Note that
the second integral on the right won't tend to zero if o < 0.
Letting V, = |vi|e-"wi, I, = |Ii|e"‘)11,

(18) becomes

s B
6p(t) =L Z]Vil IIi|e2“[cos(?mr+ ¥ V+ & I,)+cos( ¥ V- ¥ 1,)]ar
= 2

t ¥1 )28
= Ref [ 297 4 = &?PT)ar

z ¢ *2Z
¥i %
- § Re [== + o /220

Letting t-w through instants when the second term assumes its
"minimm" requires, as o > O

Re (¥ - 15ri%l 2 0 17 wfo
or '
(Re ¥)(Re I) >0 if 0 =10
By choosing real V and I and combining terms, this latter requires
Re fl > 0 for w = O and thus a pessive network necessarily has
Q(p) > O for ¢ > O where
Re (¥'I) - %]E] ifw=0
Ap) =
Re ¥I1f w =0

%
Clearly this requires Re E I>01inog>0or if Y exists
ot
Re[V YV] > 0 in ¢ > O (for any complex ¥V), vhich is the essential
positive real condition. Writing

Re ¥'I=3¥1+ ¥V =¥+ P14+ v+ 1)
¥ -F1-¥v+
S D -3 -0 - O

L e [ P
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by the reasoning above (17). Thus we know that every linear,
time-invariant, solvable N has a scattering matrix 8(p) and

1) 8(p) is analytic ing> O
2) 8'(p) =8(p) ing> 0
3) ln-g*(p)s(p) ing>0

If 8 is rational and satisfies these conditions it can be
synthesized by known methods, [Ref. 3h4].

The relation Clna(!2 is a true equivalence relation, see [Ref. 19,
p. 155]. That is

Cy~Cy

C,~C, implies C,~C)

C~C,, 02~c3 implies CI~C3

(Added in proof) This is not the case as the following counter-
examples, which we previously exhibited, show, [Ref. 36, p. 36].

For this let z(p) = p° or Z(p) = [o o].
-p (0]
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